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Thermophysical Properties of Nitrogen from a New
Potential Energy Surface Using the Mason–Monchick
Approximation
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A recent N2–N2 potential has been used to calculate the second virial,
viscosity, and diffusion coefficients. Calculations have been done up to
the first quantum correction for virial coefficients and the second-order
kinetic theory approximation for transport coefficients. The Mason–Monchick
approximation (MMA) has been used for the calculation of collision inte-
grals and, via a numerical analysis, a common intersection point has been
found for reduced cross sections and collision integrals of different orienta-
tions. This regularity has been interpreted with the aim of the orientation
dependence of the potential energy and different types of collisions between
molecules. The overall agreement of the calculated second virial coefficient
with experiment is reasonable but suggests that a slight re-scaling of the
potential would be beneficial. In the case of transport properties, calculated
and experimental results show an average deviation of about 1.6% and 0.7%
for viscosity and relative diffusion coefficients, respectively.

KEY WORDS: collision integrals; diffusion; Mason–Monchick approximation;
second virial coefficient; viscosity.

1. INTRODUCTION

The interaction energy of molecules is an important basic property that
is essential for many studies. Nowadays the calculation of intermolecular
forces is facilitated by routine quantum chemical methods. In this direc-
tion, we have recently obtained a detailed anisotropic N2–N2 potential
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energy surface (PES) from ab initio calculations at the MP2/QZ level of
theory, and this surface has been represented analytically [1]. It has been
predicted that this PES might be relatively near the exact one, since the
oscillatory behavior of the MP series up to second order results in an
underestimation of the interaction energy, which can be compensated by
the incompleteness error of the basis set employed. For our proposed
potential, however, it is crucial to test its ability to reproduce experi-
mental properties. Among various macroscopic properties, second virial
and transport coefficients usually are appropriate candidates. The Wigner–
Kirkwood expansion in �

2 is suitable for the computation of the second
virial coefficient. In particular, Pack [2] developed a formalism for the first-
order quantum correction in �

2. To calculate the viscosity and diffusion
coefficients, we have used the procedure known as the Mason–Monchick
approximation (MMA) [3], which is the classical counterpart of the infi-
nite-order-sudden (IOS) approximation of quantal inelastic scattering [4].
Essentially equivalent calculations, with different surfaces, have been per-
formed by Stallcop et al. [5]. Thus, we also present a detailed analysis of
MMA to answer some questions about it.

In Section 2, we explain some methodological aspects of this work
and corresponding formulas. Comparisons of calculated second virial, vis-
cosity, and diffusion coefficients with experimental data are presented in
Section 3. This section also contains a detailed numerical analysis of the
MMA procedure.

2. METHOD

2.1. Ab Initio N2–N2 Potential

Details of the ab initio calculations leading to the N2–N2 potential
have been described in our previous work [1]. A step-by-step fitting strat-
egy has been designed to construct an analytical representation for ab ini-
tio data in the form,

U(R, ω̂)=4π





exp [A(ω̂)−B(ω̂)R]−

∑

n=6,8

Fn(R, ω̂)
Cn(ω̂)

Rn
+

∑

p=5,7,9

Dp(ω̂)

Rp





(1)

where R is the intermolecular separation, ω̂ denotes the three angles θa, θb,
and ϕ describing the relative orientation of the molecules, and Fn(R, ω̂)

is a damping function. Hereafter, we use the notation (θa, θb, ϕ) to spec-
ify the relative orientation of the two molecules. In Eq. (1), the exponen-
tial term corresponds to the overlap repulsive contribution to the inter-
action energy. The two-term summation is the damped dispersion part of
the interaction, and the three-term summation represents the electrostatic
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interaction between quadrupole and hexadecapole moments of two mole-
cules. The functions A,B,Cn, and Dp are intermediate parameters respon-
sible for the angular dependence of interaction and are related to the final
parameters via a spherical expansion [1].

It must be mentioned that, in some orientations, this potential exhib-
its a small long-range maximum. This maximum seems to be an artifact of
the quadrupole–quadrupole term. This unphysical feature of the surface is
very small, and its effect on the calculated properties is insignificant.

2.2. Second Virial Coefficients

One of the quantities relevant to evaluating the overall strength of the
interaction over its range of action is the second virial coefficient,B(T ),
where T is the absolute temperature. This quantity for gases gives infor-
mation about the average “size” of the potential and is sensitive to the
volume of the well at low temperatures, and to the hard core of the poten-
tial at high temperatures (kBT much greater than the well-depth, where kB

is Boltzmann’s constant). Despite the fact that good agreement with B(T )

might reflect some cancellation of errors, this quantity is seen to provide
a useful test of the PES, and can be used to discriminate between the sur-
faces.

The classical contribution to the second virial coefficient for two lin-
ear molecules takes the form [6],

B(0)(T )= NA

4

∫ ∞

0
R2dR

∫

dω̂(1− e−βU ) (2)

where NA is Avogadro’s constant, U is the intermolecular potential energy,
and β ≡ 1/kBT . Hereafter, integration over ω̂ denotes the triple integral
over relative orientations of two molecules as

∫

dω̂≡
∫ 1

−1
d(cos θa)

∫ 1

−1
d(cos θb)

∫ 2π

0
dφ (3)

According to the formalism developed by Pack [2], the first-order quantum
correction of B(T ), which contains the translational B

(1)
tr (T ), rotational

B
(1)
rot (T ), and coriolis B

(1)
cori(T ) contributions can be written as

B(1)(T ) = B
(1)
tr (T )+B

(1)
rot (T )+B

(1)
cori(T )

= −NAβ2

48

∫ ∞

0
R2dR

∫

dω̂e−βU (Ĥ (0)U) (4)

where Ĥ (0) is the translation–rotation Hamiltonian operator.
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Another quantity which is relevant for testing the PES is the second
acoustic virial coefficient βa . It is related to the ordinary second virial
coefficient B(T ) and its derivatives by the following equation:

1
2
βa =B +PaT

(
dB

dT

)

+QaT
2

(
d2B

dT 2

)

(5)

in which Pa and Qa are functions of the perfect-gas heat-capacity ratio
[6]. After calculating B(T ) at several temperatures, a smooth function has
been fitted to them, and derivatives have been obtained for implementa-
tion in Eq. (5).

2.3. MMA Procedure

Mason and Monchick [3] developed their entirely classical treatment
by making three basic assumptions about the dynamics of binary colli-
sions:

(a) The effect of inelastic collisions on the trajectories is negligible.

(b) In a given collision only one relative orientation is effective.

(c) Every possible orientation has equal weight.

The physical basis for the first assumption is that the rotational
energy transfer in a binary collision, for most molecules at ordinary tem-
peratures, is much less than the translational kinetic energy and so we can
neglect its effect. This assumption is expected to work best in the high-
temperature limit and is inadequate for properties such as thermal con-
ductivity that depend specifically on the transfer of internal energy. The
second assumption is based on the fact that, although the potential acts
along the whole trajectory, the interaction at distances around the point
of closest approach mainly determines the angle of deflection, and over
this small range, the relative orientation of two colliding molecules does
not change much. This approximation, which is equivalent to the centrif-
ugal-sudden approximation [4] of quantum scattering, should become bet-
ter as the potential becomes more short-ranged. In summary, the MMA
greatly simplifies the calculation of transport properties by replacing an
angle dependent force with many central forces corresponding to different
fixed orientations.

According to this approximation, the coefficients of viscosity η and
self-diffusion D can be written as

η= 5
16

(
mkBT

π

)1/2
fη

R2
m

〈
�(2,2)∗〉 (6)
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D = 3
8n

(
kBT

mπ

)1/2
fD

R2
m

〈
�(1,1)∗〉 (7)

where Rm is a distance parameter of the potential,
〈
�(l,s)∗〉 is a reduced

collision integral averaged over all relative orientations, and fη and fD

are correction factors resulting from higher-order kinetic-theory approxi-
mations [6].

Mason and Monchick assumed that all relative orientations are
equally probable. With this additional assumption, the angle-averaged col-
lision integrals are given by

〈
�(l,s)∗

〉
= 1

8π

∫

dω̂�(l,s)∗ (8)

This equal weight approach arises naturally from the quantal IOS approx-
imation [4]. Nowadays, there are many ab initio potentials which, at least
for small systems, have a reasonable level of accuracy and reliability. It
provides opportunities for re-examination of the MMA procedure.

Validity of the MMA results has also been tested previously by Heck
et al. [7, 8] via a comparison with full classical trajectory (CT) calcula-
tions. For nitrogen the MMA viscosity cross sections differed from those
obtained from the CT approach by, at most, 5% [7], and for carbon mon-
oxide, differences of up to 10% have been observed [8]. Furthermore, in
the case of carbon dioxide, Vesovic et al. [9] have obtained smaller devi-
ations (at most 3.4%). However, they have traced this rather surprising
agreement to the cancellation of MMA errors in estimating two terms that
enter the viscosity cross section. In all cases deviations between MMA and
CT values decrease with increasing temperature.

Such comparisons show that in all investigations the MMA approach
overestimates the CT values of viscosity collision integrals (except at very
low temperatures) [7–9]. Thus, with an exact potential energy the MMA
viscosity coefficients will be smaller than accurate experimental results.
This conclusion about the relative sign of errors introduced by MMA is
important for interpreting the results of this study, since we are interested
on the errors introduced by the potential energy.

3. RESULTS AND DISCUSSION

3.1. Second Virial Coefficients

Many measured second virial coefficients B (T ) for N2 are avail-
able and cover a temperature range of 75–700 K [10]. Some recent data
for second virial coefficients from pρT measurements are also given by
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Table I. Calculated Classical and Quantum Contributions to Second Virial
Coefficient in Comparison with Experimental Results. (All values are in units

of 10−6 m3·mol−1)

T
/
K B(0) B

(1)
tr B

(1)
rot B

(1)
cori Btot Nowak et al. [11]

98 −166.98 0.90 0.70 0.035 −165.338 −166.5 ± 0.8
110 −134.46 0.67 0.50 0.025 −133.260 −133.8 ± 0.5
120 −113.93 0.54 0.40 0.020 −112.974 −113.12 ± 0.4
140 −84.06 0.37 0.27 0.013 −83.405 −83.06 ± 0.25
170 −55.35 0.25 0.17 0.008 −54.930 −54.23 ± 0.25
220 −27.92 0.15 0.09 0.005 −27.673 −26.81 ± 0.25
240 −20.69 0.13 0.08 0.004 −20.483 −19.61 ± 0.25
280 −9.82 0.10 0.06 0.003 −9.665 −8.77 ± 0.25
320 −2.07 0.08 0.05 0.002 −1.950 −1.09 ± 0.25
340 1.01 0.07 0.04 0.002 1.122 1.97 ± 0.25

Nowak et al. [11]. Table I presents the calculated classical and quantum
contributions to the second virial coefficient and compares our calculated
B (T ) with experimental data. Corresponding deviations (Bcal − Bexp) are
shown in Fig. 1. It can be seen from Table I that the quantum corrections
are only significant at lower temperatures, where their magnitudes are
greater than the experimental uncertainty. At 75 K their sum constitutes
about 1.3% of the magnitude of the classical component. By 700 K, this is
reduced to about 0.15%. The coriolis term is always small. The predicted
Boyle temperature of our potential, 332.4 K agrees with the experimental
value of 326.8 K [14] (obtained from a smooth fit of values reported by
Nowak et al. [11]) within 2%.

Our potential fails to represent the experimental data within the error
bars except at low temperatures. It yields a virial coefficient that is lower
than experimental data at all temperatures above 125 K. At all tempera-
tures greater than 100 K, the deviations are within 1 cm3 ·mol−1. At lower
temperatures, the calculated B (T ) lies higher than experiment. Relative to
the more accurate results of Nowak et al. [11], the largest deviation occurs
at 98 K and has a magnitude of 1.16 cm3 ·mol−1. However, noting that our
new potential emerges directly from the full ab initio calculations, without
any experimental adjustment, the overall agreement is reasonable.

Furthermore, Ewing and Trusler [12] and Estela-Uribe and Trusler
[13] measured the acoustic second virial coefficientβa . Deviations between
calculated and experimental values of acoustic second virial coefficient
(βa,cal − βa,exp) have been plotted in Fig. 2. As can be seen, deviations
of the acoustic virial coefficient have the same pattern as the volumetric
values.
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Fig. 1. Deviations between our calculated second virial
coefficients and those obtained via different experiments [10,
11]. Note that the scale of temperature is logarithmic.

Fig. 2. Deviations between calculated and experimental
second acoustic virial coefficients [12].

3.2. Numerical Analysis of MMA

In Fig. 3 the reduced potential energy is plotted as a function of
reduced intermolecular separation for some fixed orientations with θa =
ϕ = 0. Their corresponding reduced cross sections Q(2)∗ are shown in



1456 Karimi Jafari and Maghari

-1

-0.5

0

0.5

1

1.5

0.8

Reduced Distance

R
ed

uc
ed

 P
ot

en
ti

al
 E

ne
rg

y

(0,0,0)

(0,30,0)

(0,50,0)

(0,90,0)

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Fig. 3. Radial dependence of reduced potential energy for some
fixed orientations.

Fig. 4 as a function of reduced energy of collision on a logarithmic scale.
As can be seen, the cross sections of different orientations diverge at low
and high energies, but there is an intersection point at intermediate ener-
gies. The curves of ln Q(2)∗show a nearly linear behavior for both high
and low energies. Similar behavior has been observed in the energy depen-
dence of Q(1)∗ that is not represented here. Noting that the most attrac-
tive potential at long range is the least repulsive one at short range (Fig.
3), the inversion of the ordering of the ln Q(2)∗ curves at the intersection
point in Fig. 4 can be interpreted as follows.

With increasing energy of collision, the cross sections are determined
by the influence of repulsive forces through head-on collisions. Thus, the
curves in the high energy range of Fig. 4 are ordered according to the
strength of the short-range repulsive part of the potential. At low energies,
the cross sections are determined dominantly by the grazing collisions.
Due to the attractive forces, there is only a gradual deflection of one mole-
cule with respect to the other for a wide range of impact parameter values.
Thus, in the low-energy part of Fig. 4 the curves are ordered according to
the strength of the long- range attractive part of the potential.

We can now conclude that the high and low energy differences
between cross sections correspond to the short- and long-range differences
between potential curves, respectively. This correspondence can be used to
determine which part of the potential is sampled effectively by cross sec-
tions of different energies.
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Fig. 4. Comparison of energy dependence of reduced cross
sections for different orientations.

Fig. 5. Comparison of temperature dependence of reduced
collision integrals for different orientations.

Behavior of the temperature dependence of �(2,2)∗shown in Fig. 5
can be explained in the same way, since the averaging process of Eq. (8)
emphasizes the low-energy collisions at low temperatures and the high-
energy collisions at high temperatures.

The intersection point observed in Figs. 4 and 5 can be viewed as a
common regularity in the MMA description of transport properties. This
is also an illustrative example that provides some information about the
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Fig. 6. Orientation-dependent collision integrals and MMA
averaged values in comparison with experimental data [14–22].
SAA denotes the small anisotropy approximation [5] correspond-
ing to (θ0, θ0, 90) orientation with θ0 =54.735610.

microscopic origins of macroscopic regularities. From Figs. 3 to 5 a line is
traced successively from full microscopic features of the system to a mac-
roscopic description of it.

Figure 6 shows some orientation-dependent collision integrals and the
MMA averaged integrals compared with corresponding available experi-
mental data from T ∗ = 0.72 to T ∗ = 13.51. It contains a small portion of
our calculations that are represented in Fig. 5, and according to the above
conclusions about crossover points, it suggests that the temperature range
covered by experimental data is mostly sensitive to the short and interme-
diate ranges of potentials of different orientations. It must be noted that
in Figs. 3–5 the quantities of each orientation are reduced by ε and Rm

of its own potential but in Fig. 6 all collision integrals of different orien-
tations are reduced by ε and Rm of the global minimum orientation. This
reduction procedure is required for consistent averaging in Eq. (8), and as
a result of it, there is not a common intersection point in Fig. 6. Values
of �

(2,2)∗
exp are obtained from the experimental viscosity [14–22].
At most temperatures covered by experimental data, the upper and

lower limits of angle-dependent collision integrals belong to the lin-
ear (0,0,0) (not plotted in Fig. 6), and crossed (90,90,90) orientations,
respectively. In Fig. 6 the curve corresponding to the global minimum
orientation (50,50,0) lies higher than the MMA, and experimental curves,
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except at higher temperatures. However, at the short range of the potential
the (50,50,0) orientation is not the most stable. We also represent in this
figure the values corresponding to the (θ0, θ0,90) orientation (with θ0 =
54.735610) which can be used as a small anisotropy approximation (SAA)
[5]. Noting the simplicity of this approximation, its agreement with MMA
and experiment is relatively good except at lower temperatures.

As can be seen, it is difficult to extract decisive information about
the probability of different orientations, and we can only say that, devia-
tions between the collision integrals and experiment are strongly temper-
ature dependent and so any weighting scheme that one might design to
apply to Eq. (8) must have a temperature-dependent weight factor.

3.3. Viscosity and Diffusion Coefficients

Calculated viscosity coefficients from the MMA approach have been
compared with different experimental results [14–22], most of which con-
tain absolute measurements of η, and their reported uncertainty ranges
from 0.15% to 1% [14–20]. We have also used the values reported by
Dawe and Smith [21] and Guevara et al. [22] which contain measure-
ments relative to reference values at 293.2 and 283.2 K, respectively.
These data have been placed on an absolute scale using more recent and
accurate measurements [17] as reference values. Deviations are defined
as

(
ηcal −ηexp

)
100

/
ηexp and plotted against ln T in Fig. 7. The agree-

ment between calculation and experiment becomes better with increasing
temperature and is within 1% for 500 K <T < 2150 K. According to the
conclusions drawn at the end of Section 2.3, it can be predicted that the
points in Fig. 7 will shift to more positive values if the calculations are
repeated with the more accurate CT approach. However, this shifting may
or may not lower the magnitude of deviations. In Fig. 7, a comparison
has been also made between the small anisotropy approximation (SAA)
and other data. Its agreement with experiment is reasonable at tempera-
tures above 500 K.

Figure 8 shows the percent deviations of different calculated relative
diffusion coefficients D (298K)

/
D (T ) from experimental values of Vugts

et al. [23], whose reported uncertainty is 0.1%. The agreement of MMA
values with experiment is within 1% at most temperatures, and again the
SAA provide a good estimate of the more expensive MMA results.

In summary, we can say that there is reasonable agreement between
the calculated transport properties obtained from our potential and those
of experiment. However, from a transport-properties point of view, a clas-
sical trajectory (CT) calculation would provide a final judgment about the
performance of this potential.
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4. CONCLUSION

In this work, we have tested a new ab initio N2–N2 potential energy
surface that we have recently proposed [1]. The formalism developed by
Pack [2] has been used for calculation of the second virial coefficient.
In the present study quantum corrections for the second virial coefficient
were significant only at lower temperatures. Noting that the potential has
been calculated at the MP2/QZ level of ab initio theory, the overall agree-
ment between calculated and experimental second virial data is reasonable
and confirms our previous predictions [1]. However, deviations that for
most temperatures are within 1 cm3 ·mol−1, suggest that a slight re-scaling
of the ab initio potential would be beneficial.

The viscosity and diffusion coefficients have been calculated using
the Mason–Monchick approximation. In a numerical analysis of this
approach, we have found that the reduced cross sections and collision inte-
grals for different fixed orientations show a common intersection point in
energy and temperature diagrams, respectively. We have interpreted this
regular behavior with the aim of reduced potential energy curves for
different fixed orientations. As mentioned in this work, the observed inter-
section point can be used to determine in each specified energy range to
what part of the potential the cross sections are sensitive.

In the case of transport properties, calculated and experimental results
show an average deviation of about 1.6% and 0.7% for viscosity and rel-
ative diffusion coefficients, respectively. Inclusion of second-order kinetic-
theory corrections improves the agreement by about 0.5% for the case of
absolute results. The overall agreement between the experimental data and
those obtained from the ab initio surface is reasonable under the MMA
assumptions.
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